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Abstract
It is shown that under certain conditions the limit speed of electric charges
moving in a space of type R

n of dimension one or two, under isotropic friction,
is preserved under some perturbations. These results hold when relativistic
equations of motion are considered.

PACS numbers: 45.50.−j, 02.30.Hq

1. Introduction

The motion of a charged particle in R and R
2 under the action of a weakly varying (in space)

electric field E(x) is studied assuming that friction is present. Concretely, the existence or
not of a limit speed, which is known to exist when E is constant, see [1], is considered (see
sections 2 and 3). All these results seem to be new.

Results are also obtained (see section 5) for the relativistic equation

d

dt
(γ ẋ) = E − ẋf (ẋ2)

γ = (1 − ẋ2)−1/2

E = (0, e(y))

e(y) ≈ e0, e0 ∈ R

x = (x, y)

mass = 1

c = light speed = 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (1)

The results of this paper are not extendable to electric fields of the form

E = (ex, ey)

ex ≈ 0, ey ≈ e0

}
, (2)

whose study will be the subject of another paper.
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The results of sections 2–5 indicate that under certain conditions on e(y) and f (ẋ2), the
perturbation (0, e(y)) of (0, e0) inherits a limit velocity, even in the relativistic case.

Recent research on the asymptotic behavior of scalar second-order differential equations
can be found in [2]. Concerning references with more physical taste, see [3]. Note that in all
these papers E is a constant vector field.

The reader should have in mind the relations between the limit speed of charged particles
in an electric field with the experiments of R A Millikan in order to determine the charge of
the electron [4]. In these experiments, the frictional force is linear in the velocity [5] its origin
being the interaction of charged droplets of oil with a surrounding supersaturated water vapor
atmosphere.

This problem arises in the study of the motion of electric charges in the stars and in the
accretion disks surrounding certain black holes, where friction between the charges and the
surrounding medium is physically important and cannot be neglected. See [1] for a more
complete discussion.

2. Limit speed in one dimension

In this section, the limit behavior of ẋ (when t → +∞) for the differential equations (1), (3),
(13) and (15) shall be studied.

Note that in all these cases the limit velocity is a global one; that is, it is valid for all the
initial conditions (x0, ẋ0).

We first study the scalar equation

ẍ = E0 + p(x) − ẋ

E0 ∈ R
+, E0 + p(x) � e0 > 0

lim
x→+∞ p(x) = 0

⎫⎪⎪⎬
⎪⎪⎭ , (3)

that is, a perturbation of the differential equation

ẍ = E0 − ẋ, (4)

whose general solution is

x(t) = A + Be−t + E0t, (5)

and therefore

lim
t→+∞ ẋ(t) = E0. (6)

We now show that for every solution of equation (3) we also have

lim
t→+∞ ẋ = E0. (7)

That is, the limit speed E0 is preserved for the family of differential equations (3) when
the constant electric field is perturbed with the term p(x).

In fact, the vector field (vf in what follows) X associated with equation (3) is given by

X = (ẋ, E0 + p(x) − ẋ), (8)

and we have

(A) The orbits of X are defined for any t > 0 since:
(A.1) ẋ(t) is bounded for t > 0. Note that dẋ

dt
changes its sign on the real curve ẋ = E0+p(x)

in the plane (x, ẋ).
(A.2) x(t) cannot blow-up in a finite positive time since ẋ(t) could become unbounded,

which is impossible by (A.1).
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(B) Since X is free from zeros the projection of its orbits in the x-axis are unbounded sets. In
fact, x(t) → +∞ when t → +∞, as we show now.

Under integration of equation 3, for t > 0, we get

ẋ − ẋ0 =
∫ t

0
(E0 + p) dt − (x − x0),

and since ∫ t

0
(E0 + p) dt → +∞

when t → +∞, and ẋ(t) is bounded, we get

lim
t→+∞ x(t) = +∞. (9)

(C) We now show that for large values of t, ẋ(t) becomes positive.
In fact, one can always assume that the initial velocity ẋ0 is non-negative, since for

ẋ0 < 0 we get ẍ � E0 + p(x) � e0 > 0 and ẋ − ẋ0 � e0t , implying ẋ(t) > 0 for a certain
t > 0.

(D) Let finally prove that

lim
t→+∞ ẋ(t) = E0. (10)

We assume that ẋ(t) is not monotone when t is large, since otherwise the proof of (10) is
trivial (note that ẋ(t) → L �= E0 is a contradiction with equation (3)).

In fact, calling L1, L2 (L1, L2 ∈ R) the higher and lower limits of ẋ(t) for t → +∞,
we get

L2 = higher lim(Mn), (11)

(tn,Mn) being the sequence of relative maxima of ẋ(t).
Inserting now t = tn in equation (3) and making tn → +∞ we get

0 = ẍ(tn) = E0 − L2, (12)

and therefore L2 = E0.
Similarly, we get L1 = E0 by considering the sequence (t ′n,mn) of relative minima

of ẋ(t).
Two graphics are now given for p(x) = 10x

1+x2 sin(10x), E0 = 10, see figures 1 and 2.
Note the oscillating behavior in which ẋ(x) reaches its limit E0 = 10.

The reader will check that the reasoning of this section is valid for the family of
differential equations

ẍ = E0 + p(x) − ẋF (x)

F > 0, lim
x→+∞ F(x) = 1

}
, (13)

for which lim
t→+∞ ẋ(t) is again E0. See figure 3, for the behavior of ẋ(x) when in

equation (13) we have

p(x) = sin x

1 + x2

F(x) = 1 + x2

2 + x2

⎫⎪⎬
⎪⎭ . (14)

An open problem is the study of the limit speed for the differential equations of type

ẍ = E0 + p(x) − ẋF (x, ẋ2), (15)
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Figure 1. Initial conditions x(0) = 0, ẋ(0) = 8.

Figure 2. Initial conditions x(0) = 0, ẋ(0) = 12.

for convenient assumptions on F such as

F > 0; lim
x→+∞ F = 1,

and possibly others.
The case F(x, ẋ2) = G(ẋ2) shall be studied and generalized in section 4.

3. Relativistic case in one dimension

The relativistic counterpart of equation (13) is

d(γ ẋ)

dt
= E0 + p(x) − ẋF (x). (16)
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Figure 3. Initial conditions x(0) = 0, ẋ(0) = 9.

After easy calculations equation (16) becomes

ẍ = (E0 + p(x) − ẋF (x))(1 − ẋ2)3/2

F > 0, lim
x→+∞ F(x) = 1

0 < E0 < 1,
E0 + p

F
< 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (17)

where some assumptions on E0, p(x) and F(x) have been added (see equations (3) and (13)).
In these equations γ = (1 − ẋ2)−1/2 and the light speed is assumed to be equal to 1.

Let us see that ẋ(t) has a limit E0 when t → +∞.
In fact, the proof of section 2 holds except for the reasoning leading to equation (9). Now,

since x(t) is increasing for t large (see section 2.3) lim x(t) exists. Let x(t) → A (A ∈ R).
Then lim

+∞ ẋ(t) = 0 and lim
+∞ ẍ(t) = 0, contradicting the limit for t → +∞ of equation (17):

E0 + p(A) > 0. (18)

Therefore, A = +∞ and equations (11) and (12) are still valid for equation (17).
Accordingly, we have again

lim
t→+∞ ẋ(t) = E0. (19)

Note that we have not included in equation (16) the radiation-reaction term, [6],

2

3

1

1 − v2
[γ 2v̈ + 3γ 4vv̇2]

v = ẋ

⎫⎬
⎭ , (20)

obtained from the Lorentz–Dirac term

2

3

(
daµ

dτ
− (aλaλ)v

µ

)
τ = proper time
λ,µ = 1, . . . , 4
vλ = four velocity; aλ = four acceleration

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (21)

when the space dimension is 1 (q = c = 1) for two reasons.
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In fact, the basic equation

ẍ = (1 − ẋ2)3/2(E0 − ẋ) (22)

including radiation-reaction terms becomes

v̇ =
[
E0 − ẋ +

2

3

1

(1 − v2)1/2

(
v̈ +

3vv̇2

1 − v2

)]
. (23)

But in this equation the radiation term

2

3

1

(1 − v2)1/2

(
v̈ +

3vv̇2

1 − v2

)
(24)

cannot be considered a perturbation of the term E0, since the radiation term can be unbounded
and all the techniques in this paper are based on perturbing functions p(x) which are bounded.

The readers should also be warned that some physicists [7] are of the opinion that
radiation is not an individual phenomenon of accelerated charges, and that it is only a statistical
phenomenon. Stimulated radiation would arise in this way. For these physicists radiation-
reaction could be absent in our equations.

4. Limit speed in R
2: non-relativistic case

In this section, we study the limit behavior of (ẋ, ẏ) in the differential equations

dx

dt
= ẋ,

dẋ

dt
= −ẋF (ẋ2 + ẏ2)

dy

dt
= ẏ,

dẏ

dt
= −ẏF + E0 + p(y)

F, p ∈ Cω, E0 ∈ R
+

Eo + p � a > 0, 0 < m � F � M

lim
y→+∞ p(y) → 0, uF (u2) monotonous

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (25)

and we prove that under the above conditions

lim
t→+∞(ẋ, ẏ) = (0, L), (26)

with L being the unique solution of the equation

LF(L2) = E0. (27)

Equation (25) models the motion of a unit charge in a plane when a electric field E0 +p(y)

parallel to the y-axis and friction −ẋF(ẋ2) are present.
Note that uF(U 2) is monotonous if F ′ is positive

(
d

du
(uF ) = F + 2u2F ′).

4.1.

We first prove that ẋ → 0 when t → +∞.
Indeed, the solutions x(t), y(t), ẋ(t), ẏ(t) of equations (25) are defined for any t > 0

since the blow-up time of the vector field X = (ẋ, ẏ,−ẋF,−ẏF + E0 + p(y)) is given by

T =
∫ ∞

0

ds

‖ X ‖ �
∫ ∞

0

ds1√
k′′ρ2 + k2

�
∫ ∞

0

dρ√
k′′ρ2 + k2

= +∞

k′′ > 0, ρ2 = ẋ2 + ẏ2

⎫⎪⎬
⎪⎭ , (28)

with ds and ds1 being the Euclidean arc elements in R
4 and R

2, respectively.
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Therefore x(t), y(t), ẋ(t), ẏ(t) are bounded for finite values of t (t > 0).
Moreover, ẋ(t) and ẏ(t) are also bounded when t → +∞. This follows immediately from

the second and fourth equations (25). Note that the local extrema of ẏ lie on the R
3-surface

−ẏF + E0 + p(y) = 0. (29)

This surface is obviously bounded in ẏ (note that F � m > 0). Note also that dẏ

dt
is

negative above this surface and positive below it.
Let us finally prove that ẋ(t) → 0 for any value of ẋ(0).
In fact, assume ẋ(0) > 0 (the case ẋ(0) = 0 leads to the vertical motion of section 2).

Then ẋ(t) > 0,∀t > 0 since ẋ(t = t) = 0 (t ∈ R
+) implies a vertical motion for t � t , which

is impossible by the analyticity of equations (25).
By the second of equations (25) we get dẋ

dt
< 0. Therefore ẋ(t) has a limit L, 0 � L � ẋ0.

L must be zero since by integrating the equation dẋ
dt

< −ẋF we get

L(ẋ)|Lẋ0
= −

∫ +∞

0
F dt, (30)

and since
∫ +∞

0 Fdt is unbounded, see equations (25), L must vanish.

4.2.

We now prove that ẏ → L when t → +∞, L being the solution of equation (27).
In fact, integrating the last of equations (25) we get

ẏ − ẏ0 =
∫ t

0
(E0 + p(y)) dt −

∫ t

0
F dy, (31)

and ∫ t

0
(E0 + p(y)) dt − (ẏ − ẏ0) =

∫ t

0
F dy � M(y − y0). (32)

Therefore limt→+∞ y = +∞ (note that ẏ is globally bounded). Proceeding now as in
section 2.D we get equation (27).

The reader can check that the limit speed L persists when the perturbation term
p(y) is substituted into equations (25) by a term p(x, y) which satisfies the requirements
of equations (25) with the small correction:

lim
y→+∞ p(x, y) = 0, (33)

as in the example

p = sin x

1 + y2
− y

1 + y2
. (34)

Further extensions of the results of this section when the vector field (0, E0) is perturbed
in the form Ep = (p1(x, y), p2(x, y)), p1 �= 0 and

(
p2

1 + p2
2

)
small in relation with E0, have

been tried without success. This can be ascribed to the difficulty of getting now the limit of
ẋ(t) when → +∞, since we have now

dẋ

dt
= −ẋF + p1(x, y), (35)

and it is problematic to get (−ẋF + p1) to have a constant sign opposite to ẋ.
It could also be interesting to study equations (25) when F depends not only on ẋ2 but

also on x.
The study of an isotropic friction of the form −F(ẋ2 + ẏ2)ẋ, F standing for a 2×2 matrix,

can also be of interest.
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5. Relativistic case in two dimensions

We now study the limit behavior of ẋ(t), ẏ(t) when t → +∞ for the equations

d

dt
(γ ẋ) = (0, E0 + p(y)) − F(ẋ2)ẋ

x = (x, y)

E0 > 0, E0 + p(y) � a > 0
E0 + p

F
� 1

2
, F � M

E0 + p � e0 > 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (36)

Note that in this case |ẋ| and |ẏ| are bounded by 1, and therefore escape to infinity (that is,
x2(t) + y2(t) → +∞ in finite time) is impossible.

We have only been able to trace back [8] concerning relativistic motion, but unfortunately
only the case F = 0 (no friction) is studied.

After easy manipulations equations (36) become

dẋ

dt
= −ẋγ −1[Fγ −2 + ẏ(E0 + p)]

dẏ

dt
= −γ −1[−F ẏγ −2 + (1 − ẏ2)(E0 + p)]

⎫⎪⎬
⎪⎭ . (37)

(A) Let us first prove that for

E0 + p

F
� 1

2
, (38)

v = (ẋ2 + ẏ2)1/2 cannot approach the speed of light (v = 1).
In fact, we get from equations (37):

d

dt
(v2) = 2γ −3(−v2F + (E0 + p)ẏ), (39)

and by assumption (38) we have

d

dt
(v2) < 2γ −3(E0 + p)(ẏ − 2v2). (40)

Consequently v̇2 is negative near v = 1 (remember that E0 +p is positive and insert v = 1
in the right-hand side of equation (40)). Therefore v2 cannot approach the value v = 1.

(B) Let us now prove, as in section 4, that when ẋ0 > 0, ẋ(t) decreases with t.
In fact, from section 5.1 we can write

1 − v2 � b > 0
that is,
1 − b � ẏ2

⎫⎬
⎭ , (41)

and b � b0 > 0, since v2 cannot approach the value v = 1.
Therefore the term Fγ −2 + ẏ(E0 + p) of the first of equations (37) is greater than

Fb − √
1 − b(E0 + p), (42)

which is positive in the interval b ∈ [b0, 1] on which b varies (note that b0 depends on the
particular solution of equations (36) under hand).

Accordingly Fγ −2 + ẏ(E0 + p) will be positive if we can choose F such that

Fb �
√

1 − b(E0 + p), (43)
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that is

F �
√

1 − b(E0 + p)

b
b ∈ [b0, 1]

⎫⎬
⎭ . (44)

Note that when F is chosen in such a way that equation (44) holds, for a particular solution
P of equation (36), the same thing will happen for nearby solutions if we prove that b =
lower bound of v2(t) is a continuous functions of the initial data (x0, y0, ẋ0, ẏ0) (see
equation (41)). But this in turn implies that the bound F0 of F (see equation (44)) defined
by

F0 = (E0 + p)Max

√
1 − b

b2
, (45)

holds for a family F of solutions around the particular solution P.
The globalization of F to the totality of all the solutions of equation (36) will be

settled in a future paper.
Under these conditions the term Fγ −2 + ẏ(E0 + p) is positive and dẋ

dt
will be negative

when ẋ0 > 0 and E0+p

F
� 1

2 .
This implies that L = lim

t→+∞ ẋ(t) exists (and is zero), since taking limits on the first of

equations (37) we get

0 = −L lim
t→+∞ B(t), (46)

B(t) being a positive bounded function of t (note that L �= ±1, as was explained at the
beginning of this section).
Finally, from equation (46) we get

L = 0. (47)

The case lim
t→+∞ B(t) = 0 has been excluded since (see subsection C) for large values of t

the sign of ẏ in equation (37) is positive.
(C) We show now that lim

t→+∞ y(t) = +∞.

In fact, from the second of equations (37) we get (note that F � M)

ẏ − ẏ0 = −
∫ t

0
Fγ −3dy +

∫ t

0
γ −1(1 − ẏ2)(E0 + p)dt), (48)

and since ∫ t

0
Fγ −3dy � kb3/2(y − y0)

(1 − v2)1/2(1 − ẏ2) � (1 − v2)3/2 � b3/2

E0 + p � a > 0

⎫⎪⎪⎬
⎪⎪⎭ , (49)

we get

kb3/2(y − y0) � −(ẏ − ẏ0) + b3/2at, (50)

and therefore (y − y0) → +∞ when t → +∞.
(D) Finally, proceeding as in the above sections and taking the limit of the second of

equations (37) when tn → +∞ (at the local maxima and minima of ẏ(t), when ẏ(t)

is not monotonous at t → +∞) we get

0 = (1 − L2)1/2[F(L2)L(1 − L2) + (1 − L2)E0]

L = limt→+∞ ẏ(t)

}
, (51)
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and since L �= ±1, we get

0 = F(L2)L − E0, (52)

as we desired to prove.

6. Final remarks

It would be interesting to study the limit speeds of the solutions of equations (25) when the
inequalities 0 < m � F � M no longer hold, and therefore equation (32) is possibly false.
Nevertheless the integral

∫ +∞
0 F dt in equation (30) is still divergent for m = 0, when F ∈ Cω

(and F does not vanish identically).
Similar observations can be pointed out in the following cases:

(i) Equation (36) when F is unbounded, in which case equation (48) can be false.
(ii) Equation (39) when F(L) = 0.

Note that for charges moving in R
3 the plane π0 defined by x0; ẋ0, E is invariant for the

flow associated with the equations

ẍ = E − F ẋ
E = E0 + p
p ‖ E0

⎫⎬
⎭ , (53)

and
d

dt
(γ x) = E − F ẋ. (54)

Therefore the changes move in R
3 on these planes π0. Accordingly, they behave as if

they were moving in R
2.

The study of equations (25) when friction is anisotropic (that is, when it is of the form

−F(x, ẋ)ẋ, and −F is invariant under the transformation x → x, ẋ → −ẋ, F standing for a

2 × 2 matrix whose elements depends on (x, ẋ), F �= λ(x, ẋ)I2, I2 = ( 1
0

0
1

)
, is of physical

interest and shall be studied in a next paper.
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